Computing the Newtonian Graph
نویسنده
چکیده
In his study of Newton's root approximation method, Smale (1985) deened the Newto-nian graph of a complex univariate polynomial f. The vertices of this graph are the roots of f and f 0 and the edges are the degenerate curves of ow of the Newtonian vector eld N f (z) = ?f(z)=f 0 (z). The embedded edges of this graph form the boundaries of root basins in Newton's root approximation method. The graph deenes a treelike relation on the roots of f and f 0 , similar to the linear order when f has only real roots. We give an eecient algebraic algorithm based on cell decomposition to compute the Newtonian graph. The resulting structure can be used to query whether two points in C are in the same basin. This gives us a modiied version of Newton's method in which one can test whether a step has crossed a basin boundary. Steff ansson (1995) has recently extended this algorithm to handle rational and algebraic functions without signiicant increase in complexity. He has shown that the New-tonian graph tesselates the associated Riemann surface and can be used in conjunction with Euler's formula to give an NC algorithm to calculate the genus of an algebraic curve.
منابع مشابه
Applications of some Graph Operations in Computing some Invariants of Chemical Graphs
In this paper, we first collect the earlier results about some graph operations and then we present applications of these results in working with chemical graphs.
متن کاملCOMPUTING THE EIGENVALUES OF CAYLEY GRAPHS OF ORDER p2q
A graph is called symmetric if its full automorphism group acts transitively on the set of arcs. The Cayley graph $Gamma=Cay(G,S)$ on group $G$ is said to be normal symmetric if $N_A(R(G))=R(G)rtimes Aut(G,S)$ acts transitively on the set of arcs of $Gamma$. In this paper, we classify all connected tetravalent normal symmetric Cayley graphs of order $p^2q$ where $p>q$ are prime numbers.
متن کاملOn computing the general Narumi-Katayama index of some graphs
The Narumi-Katayama index was the first topological index defined by the product of some graph theoretical quantities. Let $G$ be a simple graph with vertex set $V = {v_1,ldots, v_n }$ and $d(v)$ be the degree of vertex $v$ in the graph $G$. The Narumi-Katayama index is defined as $NK(G) = prod_{vin V}d(v)$. In this paper, the Narumi-Katayama index is generalized using a $n$-ve...
متن کاملComputing GA4 Index of Some Graph Operations
The geometric-arithmetic index is another topological index was defined as 2 deg ( )deg ( ) ( ) deg ( ) deg ( ) G G uv E G G u v GA G u v , in which degree of vertex u denoted by degG (u). We now define a new version of GA index as 4 ( ) 2 ε ( )ε ( ) ( ) ε ( ) ε ( ) G G e uv E G G G u v GA G u v , where εG(u) is the eccentricity of vertex u. In this paper we compute this new t...
متن کاملComputing Multiplicative Zagreb Indices with Respect to Chromatic and Clique Numbers
The chromatic number of a graph G, denoted by χ(G), is the minimum number of colors such that G can be colored with these colors in such a way that no two adjacent vertices have the same color. A clique in a graph is a set of mutually adjacent vertices. The maximum size of a clique in a graph G is called the clique number of G. The Turán graph Tn(k) is a complete k-partite graph whose partition...
متن کاملUse of Structure Codes (Counts) for Computing Topological Indices of Carbon Nanotubes: Sadhana (Sd) Index of Phenylenes and its Hexagonal Squeezes
Structural codes vis-a-vis structural counts, like polynomials of a molecular graph, are important in computing graph-theoretical descriptors which are commonly known as topological indices. These indices are most important for characterizing carbon nanotubes (CNTs). In this paper we have computed Sadhana index (Sd) for phenylenes and their hexagonal squeezes using structural codes (counts). Sa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997